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ABSTRACT
The goal of this report is to summarize the experimental results and
studies of aluminum combustion in sulfur hexafluoride atmosphére. The
particles has been ejected from exploding wire. Using photography, burning
time, particle size, welocity, de&gkion, and temperature were measured.

-\)

: Tgiqal results are as follows: 380 T 25 micron diameter; particles burn in
10 ¥ .75 m8; the average initial vgt{boci;_igs were f%:/%m/s to 15 m/s; the

g
i average decelerations were from 4000 to 8000 m/e#*T. The average
’ & or =>
temperature of the burning particle was 2750 f 150 K. According to the
burning studies of the particles and the measured temperature results

the mechanism of burning can be surface burning or vapor phase burning

that occurs close to the surface of the hot patcicle&
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I. INTRODUCTION

The number of research efforts involving sulphur hexafluoride reaction -
with electrically exploded aluminum wires is very small. Conseque~tly, oné
rarely finds published literature on the topic. The SFg gas has high thermal
stability and its stability in presence of exploding high temperature metal
particles was unknown. To investigate stability of SFg, Cook et. al. [l],
performed the studies of electrically exploded Al, Zr, Ag and Pt wires in
SFg atmosphere by using discharge capacitors as the source of electrical
energy. They found that the reaction is highly exothermic creating SF4
products in the reaction. Grigor'eva et, al. [2], summarized their studies by
stating that the exposure of the liquid aluminum to SFg passivates the oxide
film of the metal surface. Their results indicate that the oxide film will
not grow in the presence of SFg. Measured values of the burning time,
velocity variations, wire rupture energy, temperature, aerodynamic drag and
the reaction behavior of aluminum particles in different atmospheres are

summarized in this report.
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II. DESCRIPTION OF THE EXPERIMENTS
A, Experimental Procedure A : -

The experiments were conducted in pressure wvessel which consisted of a
twelve-inch high stainless steel cylinder, 10.75 inches diameter with four
evenely spaced, five-inch diameter observation ports welded into its
circumference. One~inch thick, Schlieren quality, borosicalate crown glass
(BK-7) was installed in each port. Two Watlow Band Heaters were used to heat
the apparatus to operatirg tswperature and four additional Watlow Heaters were
mounted on observation port; in order to prevent steam condensation during
experiments. An Omega model 157 Digital Controller was used for temperature
stabilization. The experiments were conducted in pressure range of 20 to 21
psi and temperature of 85°C. Thermocouples were mounted in different

locations inside the chamber to measure the internal temperature.

B. Electrical Energy Measurements for Wire Rupture

The aluminum particles were generated by the exploding wire technique.
The 5 cm length wire was mounted between two holders, and the energy
transferred to the wire to cause rupture was about 58 Joule. The direct
energy measurements included the calibrated shunt current measurement and
direct voltage measurements across the wire as shown in Fig. 1.
C. Particle Temperature Measurements

P;rticle temperature was measured by two-color photo—pyrometry method (see
Berger, et. al., [3]). An Optronics Microdensitometer Photoscan system
P-1000 was used for optical density measurements. Two still Pentax 35 mm
cameras were used for two-color (480 nm, 650 nm) photography of the events.
Kodak 2475 recording film was calibrated for a detailed graph of film density
versus exposure. One millimeter aluminum wire with purity of 99,.,998% was used

in the experiments,
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Figure 1. Diagram of Test Wire Circuit

(1) Firing switch, (2) 12 Volt battery; provided e 2actrical energy for firing
switch, (3) Common ground point for entire circuit, (4) Shunt, (5) Coaxial
cable to measure current throught the wire, (6) 12 Volt battery; provided
electrical energy for test wire, (7) Solenoid, (8) Coaxial cable to trigger
wave-form recorder, (9) Test wire holder assembly, (l10) Coaxial cable to
measure voltage across wire, (l1) Aluminum test wire.




D.

Particle Burning Time Measurements

Particle burning time was measured using 35 mm still caméra equipped with.

high speed light chopper; see Chozev et. al. [4]. Kodak Ektachrome 200 ASA

film was used for photography of the time events along the particle track.

The chopper period was measured to be 0.77 ms while the on to off ratio is

2.

Hence, the exposure time is 0.77 x 2/3 = 0.5]1 ms. Elapsed time or burning

time is measured using the number of chopper periods.

E.

Measurement of Particle Velocity and Deceleration

The particle wvelocity variations along the particle track were performed

using two 35 mm still cameras as shown in Fig. 2., Using the r, o B and

data from the photographs one can find the wvelocity equation, v(t) , as

follows:

N1 + tanB cos a (1)

v(e) = ELE)

where Ar(t) is the length of chopped segment of the particle track. AT is

chopper period (0.77 ms). R 1is the inclination angle as is seen at the

camera 2. a 1is the angle as is seen at camera l.
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camera 2 ; /

/5 axl

camero | with chopper

Figure 2. Arrangement for Velocity Measurements

(1) Holder, (2) Wire, r = distance of the track on exposured film of camera
l, a = angle of the track relative to perpendicular axis on the exposure of
camera 1, B8 = angle of the inclination of the particle track on the exposure
of camera 2, R = real distance of the particle track.
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III. RESULTS

A. Photographs of Aluminum Exploding Wire in 81!5 At:msphete A -

The typical behavior of aluminum wire rupture and subsequent combustion in

SFg atmosphere is photographed using 35 mm Pentax camera and is shown in Fig.
3.

Figure 3. Aluminum Wire Combustion in SFg Atmosphere
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Fig. 3 shows the following behavior of the plasma and the particles after the

explosion: B . - SRR

l. Plasma
The size of the plasma varies from 0.5 to 0.8 cm in diameter while the
color of the glow around the plasma was between blue and violet. A
few blue streaks radiate from the plasma.

2, Particles
A relatively large number of particles were ejected from the plasma
(30 to 140). The tracks were characterized by light red illumination
while the film exposure is weaker at the ejection region due to higher

velocities of the particles.

B. Burning Time Measurements

The burning time measurements were performed by using the photograph from
camera 1 described in Fig. 2. The burning times of aluminum particles in SFg
atmosphere varies from 9 to 77 ms. Table 1 has burning rate data for two
particles. Given in Table 1 are two columns for time and for track width.
The precise relation between particle radius and track width is unknown.
Certainly the particle radius is less than the track width. A burning
particle surrounded by a flame may yield a track width equal to diameter for
the flame. Table 1 indicates that a particle with a track width of 0.285 mm
has a burning time of 9.24 ms; likewise a track width of 0.302 mm results in
a burning time of 12,52 ms.
C. Velocity and Deceleration Measurements

The velocity and deceleration measurements were performed by using
photography with 35 mm still cameras. One camera was equipped with a light

chopper, and an additional camera was positioned perpendicular to the first
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camera for measurement of inclination angles as described in Fig. 2. By using

P
i

equation (1) and distance calibration, the wvelocity and deceleration_of two - -
representative particles are summarized in Table l. The same particle tracks

are shown in Fig. 4a and Fig. 4b as photographed by the two cameras in Fig. 2.

A ATA na W

D. Particle Size Measurements
In Table 1, the size of two representative burning particles are
summarized. One can conclude that the size is decreasing along the track from
the plasma towards the end of the track.
One would like to have burning time as a function of initial particle
;; size but burning time is affected by particle wvelocity. To measure particle

velocity, the procedure discussed in connection with Fig. 2 must be used.
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Table 1. Velocity, Deceleration and Size Variation for two Typical Particles ' oo

Track
Track Frame Tise | Ax(t) | Velocity | Deceleration | Widch - Bcé - 4
_No, No. | (ms) | (wm) (m/s) | (u/s? x 103) | (mm) (a/s2}
1 1 .77 8.49 11.03 .285
4.56
2 1.54 5.79 7.52 .285
3.57
3 2,31 3.67 4.77 248
130
4 3.08 2.90 3.77 .248 8000
1.32
5 3.85 2.12 2.75 4268
97 ]
[] 4,62 1,54 2.00 0262 [
- T |
7 5.49 1,35 1.75 N/A i
31
8 6.16 1,16 1.51° N/A
P } I
9 6.93 0,97 1.26 N/A
P )
10 7.70 0,77 1.00 N/A
.g‘
11 8.47 | 0.58 0.75 N/A
17
2228 [ _0:58 [ 0,62 J/A
-2 1 77 8.73 11,34 «302
3.75
2| 1.54 6.31 8.45 2302
2.29
3 2.31 S.15 6.69 4276
1.62
3 3,08 4,19 5. 44 2276
1.52
) 3.85 3.29 4,27 2276
. «86
6 4,62 2,78 3.61 276 4000
«68
7 5.49 2,38 3.09 «276
. 31
- . 6.‘6 2.08 2070 .261
- )
" 9 6.93 1,82 2.36 .261
. «36 —
) 10 7.70 1.60 2.08 +261
R «35
. 11 8.47 1,39 1.81 +261
e 027
- 12 9.24 1.23 1.60 N/A
v .31
b 13 10.01 1.08 1.36 N/A
Py <19 |
14 10.78 0.93 1.21 N/A
«19
15 11.55 0.82 1.06 N/A '
19
16 12.32 0.73 0.91 N/A
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Figure 4a. Event as Photographed by Camera #1 of Figure 2.
tracks are due to chopper.

Note: The broken
Tracks are used to measure angle
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Figure 4b. Event as Photographed by Camera #2 of Figure 2. Tracks are used
to measure angle B .
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Due to the very large number of particles whose tracks criss-cross, the ability to
follow a specific particle is limited.

In lieu of particle burning time as a function of initial parti'c_le size, . .
histograms of initial track size and burning time are possible. These histograms

are shown in Fig. 5a and Fig. 5b.

E. Measurement of Energy for Wire Rupture
The ignition measurements were performed by using the arrangement as described
in Fig. 1. The average rupture energy was 58+3 Joules. The alumiaoum wire had a

diameter of 1.0 mm,

F. Aerodynamic Drag Studies

By using experimental results for the welocity, deceleration, and burning
particle size, particle motion can be determined. Application of Newton's second
and third laws to the particle yields the following equaiton of motion for

particle motion in continuum flow:

dv .
Lol -mV F (2)

where

1
F=3og v2cpA

Reynolds number, Re , is calculated as follows:
po Vd
Re = Ju— = 1000

for following values:

- viscocity = 23.8 x 106 kg/sm [5]

n
V - 1inicial velocity = 11 m/s

pg = SFg density at 366 K = 7.3 kg/m3
d - particle diameter = 300 ym

Using Hoermer [6] it follows that the particle drag coefficient is about 0.8, By
using the assumption that particle mass is m = pA141|r3/3 and the aluminum

density is constant, equation (2) can be rewritten as follows:

13




The first term (in the right side) in equation (3) represents the mass reduction

due to a uniform outward flur of A1F3> molecules. The net force on the partfﬁie
due to the flux of AlF3 1is zero. For typical particle of r = 145um with
initial velocity of V=11.2 m/s and average r = =6.10~3 m/s, the calculated
deceleration is 2807 m/s2 which is comparable with the average measured
deceleration 4155 m/s2. One can conclude therefore that the drag is the cause

for the deceleration.,

G. Temperature Measurement of Aluminum Particles in SFg Atmosphere

The temperature measurements were performed using the two color-photo-pyrometry
method (TC-PPM) method as described by Berger et. al., [3]. Typical results for
temperature measurements are shown in Fig. 7 and Fig. 9 based on measured film
densities that are shown in Fig. 6 and Fig. 8, respectively.

Table 2. Film Density and Calculated Temperature as a Function of Distance Along
the Particle Tracks

Dist ance Y1 U2 m o
236.0 1.91 1,22 2551 *£ 5,7%
222,0 1.92 1.27 2654 * 5.7%
195.0 1.68 1.04 2513 + 5,7%
165.0 1.35 .93 2822 £ 5,7%
152.0 .98 «65 2772 + 5.7%
127.,0 1,20 .85 2897 + 5,7%

Notes:

l. Distance is normalized; actual distance in millimeter is obtained by
multiplying by 0.1315.

2, D) is the film denstiy using red filter, and Dy is the film density using
the blue filter. These data apply to Fig. 6 and 8.

3. The error of 5.7% was calculated using the procedure of References 3 and
14

7.
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In Fig. 7 and Fig. 9, horizontal lines have been drawn at the vapor temperature
for pure aluminum which is 2740 K. The measured particle temperatures are nearly

equal to the vapor temperature.
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:; IV. DISCUSSION

"

>, A. A Comparison of Aluminum Combustion in Different Atmospheres : -

d Aluminum vapor reacting in oxygen, steam or SFg is exothermic. The heat of
&

Y. reaction for each case is shown in Table 3.

’,

A

\ Experimental results are reported in Table 4. Each of the column headings
o will be discussed. In addition to combustion in air, steam and SFg tests were
<

'_':: conducted in vacuum.
b
" Motivation for conducting the tests in vacuum included the desire to ascertain
Ny the influence of ambient atmosphere on wire rupture. Also the radiation from
~

¢ particle should not be the same in vacuum since combustion does not occur.

<
o Table 3. Heat of Reaction for Aluminum Reacting with Oxygen, Steam and Sulfur
.. Hexaf luoride

a
s Reaction ¥(298 K)

] Ambient Gas ~ kcal/mole kcal/mole

’:_ Oxygen 2A1(g) + 3/2 02 (g) » Aljy043 -408
4- Steam 2A1(g) + 3H; 0(g) » Aly 03 + 3Hy -237

o SFgq 2A1(g) + 3SFg (g) » 2A1F3 + 3SF4 =264

=
Ao

, Notes: The value of AH shown is the kcal/mole of product, i.e., Al703 or
i AlF3 as appropriate.

The electrical energy input to the wires was measured. The energy input
::.: causes rupture of the wire and establishes the initial conditions for the ejected
. particles. These initial conditions include number of particles, size

_::: distribution of particles, initial temperature, and particle welocity.

=

.‘4 In magnitude, the energy to cause rupture is 86 J for air atmosphere
k. decreasing to 58 J for SFg atmosphere.
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To explain the difference the following arguments can be made: the wire
initially has a thin coating of aluminum oxide. - The aluminum oxide has a
higher melting temperature (2300 K) than pure aluminum (932 K). In either air
or steam as the wire i1s heated, the oxide layer grows in thickness. In
contrast, as the wire is heated in SFg an increase in thickness of oxide layer
does not occur. The oxide layer provides mechanical strength as well as
absorbs more energy due to higher melting temperature. These observations
are consistent with the obee.rvations of Brzustowski and Glassman [8] and
Grigor 'eva [2].

For each of many individual tests of exploding wires, the number of
particles created by the wire rupture were counted. The range of particle
counts are given in each case. The number of particles formed by wire rupture
in vacuum is considerably less than for rupture in air or steam. Further,
many more particles may be formed by wire rupture in SFg. Hence the ambient
gas influences wire rupture.

The missing segment of wire, which forms the hot particles, tends to
be about one wire diameter. Knowing the wire "gap"” and number of particles,
an estimate can be made for average particle diameter.

In passing, a comment concerning the radiation from particles formed in
vacuum and in an oxidizing atmosphere is appropriate. When the particle is
formed in vacuum, the radiant energy which exposes the film is due solely to
thermal radiation. For burning particles the radiation includes that due to
chemical reaction in the flame. To observe the particles formed in vacuum,
the most sensitive film (ASA 3200) was required. For observing the burning
particles in air, steam or SFg, film with film speed of ASA 200 was used. The
column labeled "Time Particle Radiates” provides the average values obtained
from many tracks observed in many experiments. Fig. 5b discussed earlier

20
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gives a histogram of burning time. Burning time in these experiments equals
the time that particle was observed by the film.

Using the chopper, the particle velocity can ﬁe méasured, Th?'tniéial -
velocity at which the particles are ejected from the wire are given in Table
4, Particles ejected from wire rupture in vacuum tend to be longer (fewer
particles) moving at a smaller velocity. Particles formed in steam have the
highest wvelocity.

A description of the plasma is given in Table 4 as well as notes
concerning particle behavior.

Finally, the average value for initial track width is given for cases of
particles formed in steam and SFg. The track width differs from the particle
diameter by the size of the flame. Fig., 5a provides a histogram of initial

track width; these data are for many tracks from a few experiments.

B. Model for Combustion Rate and Particle Temperature
Using the simpified model for the burning of a single droplet of fuel that
was made by Goldsmith and Penner (9] and using equation (24) from page 282 of

Goldsmith and Penner:

C
. 4m tall + 7% (T = Tp)]

(4)
Cp i _ L
where m - steady-state mass rate of fuel consumption
A = thermal conductivity of aluminum =237 @ gﬁ%% 300 K

Cp = specific heat of aluminum = 0.26 S5 @ 2000 K

L - specific latent heat and aluminum = 95 5%%

T. = combustion temperature = 3000 K

21
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Tp - temperature on the particle surface

rp - radius of the particle - : ‘ ' - .-

re = radius of combustion zone
p = aluminum density = 2,7 gm/cm3
Equation (4) can be rewritten in different way by using the measured

terms of r., re, Tc and by assuming that m = 4wprp2.ip as follows:

_L el S .
Tp = TC cp [exp (7 ;¢ Dorcrc) 1] (5)
where
r
as _c ? 1.
Tp
ol Cpprer
Define a parameter X === PP i < (6)

By using the variation of a from 1l to 2, the following results for X
could be obtained:

0 < X <0.,00124
where . r = 0.6 ca/s ,

rc = 0.0142 cm

T. = 2800°C .

1 < a <2
Using the above result for X in equation (5) leads to the result that the
particle temperature (Tp) is almost equal to combustion temperature (T.)
or T, > T, . Further, using this result in equation (4) shows that r. > pe
By applying the same model for a conventional fuel as benzene, using the

known following characteristics:
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Cp(2) = 32.4 cal/gk [5]
A= 2,87 X 1074 cal/scuK (5] ' B
L = 131.5 cal/g (5]
o = 0.88 g/em3 [5]
a=9 (9]
To = 3200 K (9]
Assuming that Ec for the benzene will be the same as measured for
aluminum combustion in SFg q:mosphere (0.6 cm/s), the factor X equals 6.5
and Tp equals to 510 K, This result is comparable to the results in
Goldsmith and Penner [9]. Therefore, according to this model, one can
conclude that the combustion of aluminum particles in SFg atmosphere takes

place on the surface or close to the surface of the particle.

C. Conclusions

Listed below is the summary of experimental observations and a fact
concerning the energy release due to aluminum combustion in SFg compared to
combustion in aia or steam.

a) According to stoichometric equation, the reaction in SFg is more
exothermic than in steam.

b) No oxide coating on aluminum particles (pure aluminum) burning in SFg.

c) Decrease in track size along all the tracks in SFg.

~ d) Long burning time in SFg compared to combustion in steam and in air.
i e) Smaller size of the track width in SFg compared to steam.
E f) Lower combustion temperature in SFg than in air and steam.

According to (a) one might expect a faster reaction rate in SFg than in steam,

but the observations in (d) and (e) indicate lower rate of burning than in

steam. Hence, one can anticipate that different mechanism of burning occurs
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in SFg than in steam. The measured temperature in SFg (Tp) that is higher

than Tp, (vapor temperature of AfF3) indicates that sublimation of —~AF3- - .
occurs in the reaction zone.

The decrease in particle size along the track (c) and the absence of oxide
coating on the particle surface (b) is evidence for the sublimation. There
was found by Brzustowski and Glassman [8] and by many other investigators
that aluminum combustion in air and in steam is a vapor phase combustion which
is characterized by Tpg < ’;'c < Tpo , where Tp, is vapor temperature of
the metal, T, is the temperature of combustion, Tp, 1is the boiling
temperature of the oxide. (For burning in SFg, the oxide is AF3).
Markstein {10] defined the surface burning by T, = Tpo < Tpp o

According the measured temperatures for aluminum combustion in SFg and the
model of combustion in Section B, the conditions are comparable except the

result of T. = Tpy .

Table 5. Summary of Relevant Data

Temperature K
Melting Temperature of Aluminum Toum 923
Boiling Temperature of Aluminum Tha 2740
Boiling Temperature AZLFj3 Tho 1564
Measured Temperature Tn 2750 * 150

Assume tle measured temperature, T, , equals ﬁhe flame temperature, T.:
this is not a critical assumption and is stated for purposes of discussion.
The measured temperature range is from 2600 K to 2900 K. If the actual T,
is 2600 K, then surface burning occurs. If the actual T, 1is 2900 K then
vapor phase burning is consistent with the observations.

Arguments can be given for surface burning. According to Table 4 the

o A T e e gt o
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rate of burning of aluminum in SFg is 0.4 times the rate of burning in steam.
Particles formed in SFg tend to be smaller than those formed in steam; see
Table 4. Adjusting burning rate for particle diameter, the vﬁlue of 0.4 for
the ratio of rates is even smaller. This fact is indicative of surface
burning but is not conclusive.

According to Section B, the fact that r. = Tp is consistent with
Te = Tp and with a vapor phase reaction. A controlling rate is heat transfer

to the particle which is apppoximately

o mL A T, -
4=% "% to-rp 2P

where A is the surface area of an aluminum particle, and q 1is heat flux in
J/s « Equation (7) indicates that when T, = T, , then ro =rp .
In Fig. 10 there is logical flow graph for determining the combustion

process.
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OBSERVATIONS & DATA
ABOUT CHEMICAL COMPONENTS
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OF OXIDE
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Y
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Figure 10,
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SURFACE
BURNING

Logical Flow Graph Determining the Combustion Process
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